A Radial Basis Function Approximation for Large Datasets
نویسندگان
چکیده
Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for large scattered datasets in d-dimensional space. It is non-separable approximation, as it is based on a distance between two points. This method leads to a solution of overdetermined linear system of equations. In this paper a new approach to the RBF approximation of large datasets is introduced and experimental results for different real datasets and different RBFs are presented with respect to the accuracy of computation. The proposed approach uses symmetry of matrix and partitioning matrix into blocks.
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملA New Radial Basis Function Approximation with Reproduction
Approximation of scattered geometric data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for large scattered (unordered) datasets in d-dimensional space. This method is useful for a higher dimension d ≥ 2, because the other methods require a conversion of a scattered dataset to a semiregular mesh using some tessellation techniques, whi...
متن کاملTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کامل